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Abstract

Tumor anti-angiogenesis is a cancer treatment approach that aims at preventing the primary tumor from developing its own vascular
network needed for further growth. In this paper the problem of how to schedule an a priori given amount of angiogenic inhibitors in
order to minimize the tumor volume is considered for three related mathematical formulations of a biologically validated model
developed by Hahnfeldt et al. [1999. Tumor development under angiogenic signalling: a dynamical theory of tumor growth, treatment
response, and postvascular dormancy. Cancer Res. 59, 4770-4775]. Easily implementable piecewise constant protocols are compared
with the mathematically optimal solutions. It is shown that a constant dosage protocol with rate given by the averaged optimal control is
an excellent suboptimal protocol for the original model that achieves tumor values that lie within 1% of the theoretically optimal values.
It is also observed that the averaged optimal dose is decreasing as a function of the initial tumor volume.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Tumor anti-angiogenesis is a cancer treatment approach
targeted at the vasculature of a growing tumor. Its
biological foundation was first introduced by Folkman
(1971, 1972): A primary solid tumor, after going through a
state of avascular growth, at the size of about 2mm in
diameter, starts the process of angiogenesis to recruit
surrounding, mature, host blood vessels in order to develop
its own blood vessel capillaries needed for supply of
nutrients. The lining of these newly developing blood
vessels consists of endothelial cells and the tumor produces
vascular endothelial growth factor (VEGF) to stimulate
their growth (Klagsburn and Soker, 1993) as well as
inhibitors to suppress it (Folkman, 1995). Overall this
process is based on a bi-directional signalling that can be
viewed as a complex balance of tightly regulated stimula-
tory and inhibitory mechanisms (Folkman and Klagsburn,
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1987, Davis and Yancopoulos, 1999). Anti-angiogenic
treatments rely on these mechanisms by bringing in
external angiogenic inhibitors (e.g., endostatin) targeting
the endothelial cells and thus blocking their growth. This
indirectly effects the tumor which, ideally, deprived of
necessary nutrition, would regress. Since contrary to
traditional chemotherapy this treatment targets normal,
not cancer cells, it was observed that no resistance to the
angiogenic inhibitors developed in experimental cancer
(Boehm et al.,, 1997). For this reason tumor anti-
angiogenesis has been called a therapy “‘resistant to
resistance” that provides a new hope for the treatment of
tumor type cancers (Kerbel, 1997) and as such in the last 10
years became an active area of research not only in
medicine (e.g., Davis and Yancopoulos, 1999; Hahnfeldt
et al., 1999, see also, Kerbel, 2000), but also in other
disciplines including mathematical biology (e.g., Anderson
and Chaplain, 1998; Sachs et al., 2001; Ergun et al., 2003;
Hahnfeldt et al., 2003; d’Onofrio and Gandolfi, 2004; Agur
et al., 2004; Forys et al., 2005).

Specifically in mathematical modelling several models
describing the dynamics of angiogenesis have been
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proposed. Some of these aim at fully reflecting the
complexity of the biological processes (e.g., Anderson
and Chaplain, 1998; Arakelyan et al., 2003), and allow for
large scale simulations, but are less amenable to a
mathematical analysis. Most theoretical techniques from
such fields as dynamical systems or optimal control theory
can only effectively be used in low-dimensional systems.
Hahnfeldt et al. (1999), a group of researchers then at
Harvard Medical School, developed and biologically
validated a two-dimensional model of ordinary differential
equations for the interactions between the tumor volume,
p, and the carrying capacity of the endothelial cells, ¢g. The
latter is defined as the maximum tumor volume sustainable
by the vascular network. Henceforth we also refer to this as
the endothelial support of the tumor for short. Based on
this model and the underlying spatial analysis carried out
in that research two main modifications of the original
model have been formulated since then, one by d’Onofrio
and Gandolfi (2004) at the European Institute of Oncology
in Milan, the other by Ergun et al. (2003) at the Cancer
Research Institute at NIH. In each formulation a
Gompertzian model with variable carrying capacity ¢ is
chosen for tumor growth, but the equations for the
endothelial support differ in their inhibition and stimula-
tion terms, I(p,q) and S(p,q). The dynamics of these
systems as well as the important problem of how to
schedule an a priori given amount of angiogenic inhibitors
in such a way as to realize the maximum tumor reduction
possible was analyzed in several papers (Ergun et al., 2003;
d’Onofrio and Gandolfi, 2004; Ledzewicz and Schittler,
2005a, 2006a,b, 2007, 2008; Swierniak et al., 2006a, b).
Here we draw on this research to investigate easily
implementable protocols.

For each of these three models we gave a complete
mathematical analysis of the structure of optimal controls
(Ledzewicz and Schittler, 2005a,b, 2006b, 2007, 2008).
While optimal controls only contain one interval where all
available inhibitors are given at maximum dose for the
model in d’Onofrio and Gandolfi (2004), mathematically
these are called bang-bang controls, the other two models
have optimal solutions that contain so-called singular
controls. These are specific, time-varying, state dependent,
feedback controls at less than maximum dose that are not
medically or biologically realizable. Thus the question about
suboptimal, but realizable protocols arises. In this paper we
compare the effectiveness of simple protocols that give all
available inhibitors at constant dosages from the beginning
of the therapy with those of the optimal protocols. We
consider two ad hoc strategies of giving full dose and half
dose and a third protocol when the actual dosage is
computed as the average dose of the optimal control, that is

1 /Tow A
= Ugpe(2) dt = ,
Tor o opt (1) Tor

where u,,, denotes the optimal control as a function of time,
T op: 1s the time when all inhibitors are exhausted along this

optimal control, and A denotes the a priori specified overall
amount of inhibitors to be given. Optimal controls naturally
depend on the initial conditions for the problem, that is the
initial tumor volume p, and its endothelial support ¢,, and
thus also the averaged optimal dose @ becomes a function of
these initial data. The constant ad hoc dosage protocols at
maximum or half the maximum dose have the advantage of
not requiring precise information, but these ad hoc strategies
tend to be inferior to the average of the optimal controls.
This strategy indeed defines an excellent suboptimal protocol
for the model considered in Hahnfeldt et al. (1999) that
generally comes within 1% of the theoretically optimal value
for the model. Naturally, the type of suboptimal protocol
that is best depends on the model under consideration, but
the reasons for the superiority of specific simple strategies
can be understood from the properties of the dynamics and
knowledge of the optimal solution.

Applications of optimal control to mathematical models
arising in biomedical problems have a long history going
back to Eisen’s monograph (Eisen, 1979) and some of the
classical papers by Swan (1988, 1990). The early focus was
on models in connection with cancer chemotherapy and
these efforts have continued to the present day (e.g.,
Swierniak, 1995; Fister and Panetta, 2000; Ledzewicz and
Schittler, 2002a, b). But methods of optimal control have
also been applied in new directions of research to models of
HIV-infection (e.g., Kirschner et al., 1997; Butler et al.,
1997) and novel treatment approaches to cancer. These
include the research on the models for tumor anti-
angiogenesis described in this paper, but also a strong
and increasing recent interest in applications to models for
immunotherapy (e.g., de Pillis and Radunskaya, 2001;
Castiglione and Piccoli, 2006). While there exist some
mathematical models in which optimization methods are
utilized in the context of combination therapies such as the
combination of radiotherapy and anti-angiogenic treat-
ment considered by Ergun et al. (2003), these approaches
are very recent and mathematical models are only in the
stage of development. In most of the literature that applies
optimal control methods to biomedical problems it is
common to only analyze the first-order necessary condi-
tions and then proceed with numerical simulations. We
want to emphasize that contrary to this approach our
research presented here is based on a fully worked out
theoretical solution of the problem considered and
numerical computations are only used to illustrate these
results.

The paper is organized as follows: In Section 2 we review
the biological/medical background and formulate the three
mathematical models that will be considered. Section 3
then gives a full description of the optimal solutions for
arbitrary initial conditions, a so-called regular synthesis, for
each of these models. We refer to our previous work
(Ledzewicz and Schittler, 2005a, b, 2006b, 2007, 2008) for
the derivation and proofs of these results, but include a
brief presentation of the concept of a regular synthesis and
its sufficiency for optimality in an Appendix. The optimal
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protocols resulting from these theoretical solutions provide
a benchmark with which the other more realistic strategies
can be compared. Then in Section 4 an extensive study of
constant dosage protocols, easily implementable, realistic
strategies, is done. It is shown that, depending on the initial
conditions (tumor volume and size of endothelial support
at the beginning of therapy) different types of constant
dosage suboptimal protocols provide the best approxima-
tion of the optimal controls. An interesting observation is
that a lower constant dosage generally does better for high
initial tumor volumes. The reason for this lies in the
strongly differential-algebraic character of the overall
dynamics and the fact that for a high initial tumor volume
the so-called slow manifolds for constant dosage systems
better approximate the optimal singular arc if the dosage is
lower. We briefly comment on multi-period protocols in
the conclusion.

2. Mathematical models for the dynamics of tumor
anti-angiogenesis

The underlying mathematical model on which all the
models considered here are based was developed and
biologically validated by Hahnfeldt et al. (1999) and, as
already mentioned, has the primary tumor volume, p, and
the carrying capacity of the vasculature, ¢, as its principal
variables. Tumor growth is described as Gompertzian with
a variable carrying capacity represented by ¢. Conse-
quently the rate of change in the volume of primary tumor
cells is given by

5 — —&pl p>’ 1
P épn<q (1)

where ¢ denotes a tumor growth parameter. Other growth
models, like, for example, logistic growth considered by
d’Onofrio and Gandolfi (2004), or general growth func-
tions considered by Forys et al. (2005), are equally realistic,
but lead to different computations and the corresponding
optimal control problems would need to be analyzed
separately. We thus retain the original modelling. The
models we consider here differ in the equations for the
dynamics of the endothelial support. Overall this dynamics
is a balance between stimulatory and inhibitory effects and
its basic structure can be written in the form

qg=—uq+Sp,q)—1(p,q) — Gug, ()

where 7 and S denote endogenous inhibition and stimula-
tion terms and the terms ug and Gugq that have been
separated from the general terms describe, respectively, loss
to the endothelial cells through natural causes (death, etc.),
and loss of endothelial cells due to additional outside
inhibition. Generally u is small and often this term is
negligible compared to the other factors and thus in the
literature sometimes p is set to 0 in this equation. The
variable u represents the control in the system and
corresponds to the concentration of the inhibitors while
G is a constant that represents the anti-angiogenic killing

parameter. In the model by Hahnfeldt et al. (1999), making
“the usual pharmacokinetic assumptions,” the concentra-
tion is still linked with the angiogenic dose rate v by a first-
order linear ODE

u=—yu-+uo, 3)

where 7 is the clearing rate for the inhibitors. In the model
analyzed here this relation has been dropped or, in other
words, we only consider a zero-order pharmacokinetic
model that identifies concentration with dosage. While
clearly a simplification, this only neglects the transient
behavior in (3) and, as has been argued by us in connection
with mathematical models for chemotherapy (Ledzewicz
and Schittler, 2005b) a linear PK-model does not change
the qualitative structure of solutions and also quantita-
tively the changes are minor, especially if the dynamics (3)
is fast. Here we thus identify the concentration of inhibitors
with the angiogenic dose rate administered.

The problem of how to administer a given amount of
inhibitors to achieve the “best possible” effect arises
naturally. One possible formulation, considered first in Ergun
et al. (2003) and then taken up by us in Ledzewicz and
Schéttler (2005a, 2006b, 2007, 2008), is to solve the following
optimal control problem: for a free terminal time 7', minimize
the value p(T) subject to the dynamics (1) and (2) over all
piecewise continuous (more generally, Lebesgue measurable)
functions u: [0, T] — [0, ] that satisfy a constraint on the
total amount of angiogenic inhibitors to be administered

T
/ u(r)de< A. 4
0

The upper limit « in the definition of the control set U = [0, d]
is a previously determined maximum dose at which inhibitors
can be given. Note that the time 7" does not correspond to a
therapy period in this formulation. Instead the solution to this
problem gives the maximum tumor reduction achievable with
an overall amount A of inhibitors available and 7 is the time
when this minimum tumor volume is being realized. Mathe-
matically it is more convenient to adjoin the constraint as
third variable and define the problem in R®. Hence we
consider the following optimal control problem:

[OC] For a free terminal time 7, minimize the value p(T)
subject to the dynamics

p=—&pln (’5’) 2(0) = po. )

g=—puq+Sp,q9) —1(p,q) — Gug, q0)=gqy, (6)

y=u, y0)=0, (7
over all piecewise continuous functions u : [0, T] —

[0, a] for which the corresponding trajectory satisfies
WT)<A.

While some of the analysis can be done for the general
model [OC], the stimulation and inhibition terms need to
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be specified further in order to obtain more than just
qualitative statements. In this paper we consider three
specifications of this model that all are based on the paper
by Hahnfeldt et al. (1999). In that paper a spatial analysis
of the underlying consumption—diffusion model was
carried out that led to the following two principal
conclusions:

1. The inhibitor will impact endothelial cells in a way that
grows like volume of cancer cells to the power % (The
exponent % arises through the interplay of the surface of
the tumor through which the inhibitor needs to be
released with the volume of endothelial cells.)

Thus in Hahnfeldt et al. (1999) the inhibitor term is taken
in the form

1(p,q) = dp**q (®)
with d a constant, mnemonically labelled the “death” rate.

The second implication of the analysis in Hahnfeldt et al.
(1999) is that:

2. The inhibitor term will tend to grow at a rate of ¢*p”
faster than the stimulator term with o+ f = %

However, the choice of o and f in this analysis allows some
freedom and in fact is the main source of variability for the
other models considered in the literature. Hahnfeldt et al.
(1999) select « =1 and = —% resulting in the simple
stimulation term

S(p.q)=bp )
with b a constant, the “birth” rate. However, other choices
are possible and, for example, taking o =0 and f = %
results in the equally simple form

S(p,q) = bq (10)
chosen by d’Onofrio and Gandolfi (2004) and resulting
in a much simpler g-dynamics for the model. It is a feature
of either system (see below) that the g-dynamics is much
faster than the p-dynamics and the systems exhibit a
behavior characteristic of differential-algebraic models. In
fact, it is argued by Ergun et al. (2003) that the systems
tend to reach their steady state too fast. Since p and
¢q tend to move together in steady state, ideally p = ¢, there
is some freedom in selecting the terms for inhibition
and stimulation, and Ergun et al. (2003) modify the ¢
equation to

§ = —uq + bg?? — dg*"* — Gug. (11)

Their justification for this change or approximation lies in
a different balance in the dynamics for the substitution of
stimulation and inhibition, but compared with the under-
lying model of Hahnfeldt et al. (1999) the inhibitor term in
this model is now only proportional to tumor radius and
thus the premises of this model are not fully consistent with
the implications of the analysis in Hahnfeldt et al. (1999).
As another justification for the choice qu/ 3 for the

stimulation term, it could be argued that the necrotic core
of the tumor does not interact with endothelial cells and
thus the power % could also be interpreted as scaling down
the interactions from the tumor volume p to the surface
area p*/3 of the tumor and then interchanging p and ¢ for
the steady-state analysis, as it is done in Ergun et al. (2003).
The mathematical advantage of this approach is that the
dynamics becomes a tremendous simplification in the sense
that it eliminates a direct link between tumor cells p and
endothelial cells ¢g. As we shall see in Section 3, with all
these simplifications, this model nevertheless retains the
essential features of the problem and its optimal solution is
qualitatively identical with the one for the original model,
while the modification by d’Onofrio and Gandolfi (2004)
that is fully consistent with the modelling implications of
Hahnfeldt et al. (1999) leads to a qualitatively different
structure. We summarize the differences between the three
models in Table 1 and henceforth refer to these models as
models (A), (B) and (C).

Before analyzing the optimal controls for problem [OC]
for these models, we first describe the dynamics for the two
standard situations: (a) the uncontrolled system, that is
with u = 0, and (b) the system under constant, maximum
dosage, that is for the control u = a. Figs. 1(a)-3(a) give
simulations of the phase portraits of these systems with
u = 0 and Figs. 1(b)-3(b) show the dynamics with u = a. In
all our figures we plot p vertically and ¢ horizontally since
this easier visualizes tumor reductions. For the simulations
in this paper we use the following parameter values that are
taken from Hahnfeldt et al. (1999): The variables p and ¢
are volumes measured in mm?; ¢ = 0.192/1n 10 = 0.084
per day (adjusted to the natural logarithm), b = 5.85 per
day, d = 0.00873 per mm? per day, G = 0.15 kg per mg of
dose per day with concentration in mg of dose per kg, and
for illustrative purposes we chose a small positive value
for u, ©=0.02 per day. Since we identify dosage and
concentration, both ¢ and A4 are in units of concentration.
Since the dynamics of the systems considered are different,
and this does lead to different quantitative results,
to allow for these variations we picked a =75 and 4 =
300 for models (A) and (B), but reduced these values to
a=15 and A =45 for model (C). These specific values
chosen are purely for illustrative purposes and are not
based on biological data. The values of all the parameters
used in our numerical calculations are summarized in
Table 2.

Table 1
Models for inhibition and stimulation terms

Model Inhibition Stimulation Reference
term 1(p, q) term S(p, q)
A dp*q bp Hahnfeldt et al. (1999)
(B dp*q bq d’Onofrio and Gandolfi
(2004)
© dg* bg*? Ergun et al. (2003)
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Fig. 1. Model (A): Phase portraits for the uncontrolled dynamics, u = 0, (a, left), and with a constant control, u = a = 75, (b, right). The system has a
strong differential-algebraic character and trajectories follow the slow manifold (i.e., the ¢ = 0 nullcline) into the globally asymptotically stable node (7, )

for u = 0 (left), respectively, converge to the origin (0,0) for u = a (right).
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Fig. 2. Model (B): Phase portraits for the uncontrolled dynamics, u = 0, (a, left), and with a constant control, u = a = 75, (b, right). The uncontrolled
system has a globally asymptotically stable focus (7, ) (left); all trajectories of the controlled system converge to the origin (0, 0) asymptotic with the p-axis

(right).

It is shown by d’Onofrio and Gandolfi (2004) that the
uncontrolled models (A) and (B) have the same and unique
equilibrium point given by 5 = § = ((b — p)/d)*'?, equal to
17,258 mm? for our parameter values. This equilibrium
is globally asymptotically stable, a node for model (A)
(Fig. 1(a)), a focus for model (B) (Fig. 2(a)). The
uncontrolled model (C) also has a globally asymptotically
stable node, but now given by =g = ((/p2 + 4bd —
,u)/Za’)3 and equal to 15,191mm?® in our simulation
(Fig. 3(a)) (Ledzewicz and Schéttler, 2005a). Note that
these equilibria coincide for u = 0. These values are too
high to be acceptable and it is the aim to lower these set
points through anti-angiogenic therapy. The biologically
most relevant region for all these models is therefore

contained in the square
7 ={(p,q) : 0<p<p,0<q<q} (12)

and in order to exclude discussions about the structure of
optimal controls in regions where the models do not
represent the underlying biological problem, we thus
restrict our discussions to this domain 2. Adding the
control term Gug and making the reasonable assumption
that

(13)

i.e., the parameters related to outside inhibition are able to
overcome the net effect of ““birth” minus “death”, one can
show that this globally asymptotically stable node is

Ga>b— u>0,
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Fig. 3. Model (C): Phase portraits for the uncontrolled dynamics, u = 0, (a, left), and with a constant control, u = a = 15, (b, right). Here the equilibrium
point, a globally asymptotically stable node, is preserved and the ¢ = 0 nullclines are given by the vertical lines ¢ = §.

Table 2
Variables and parameter values

Variable/coefficients Interpretation Numerical value Dimension
P Tumor volume mm?

q Carrying capacity of the vasulature mm?

y Remaining inhibitors mg

14 Tumor growth parameter 0.084 day™!

u Natural loss of endothelial support 0.02 day™!

b Stimulation parameter, “birth” 5.85 day™!

d Inhibition parameter, “death” 0.00873 mm~—2 day’l
G Anti-angiogenic killing parameter 0.15 conc! day’l
Model (A) a Upper limit on concentration 75 conc

A Available amount of inhibitors 300 mg

Model (C) a Upper limit on concentration 15 conc

A Available amount of inhibitors 45 mg

preserved for model (C) (Fig. 3(b)), but can be shifted to a
much lower value, 17mm? for our parameter values. For
models (A) and (B), however, the equilibrium ceases to
exist and all trajectories converge to the origin in infinite
time (Figs. 1(b) and 2(b), respectively). This, in principle,
would be the desired situation since, at least theoretically, it
allows eradication of the tumor using a constant dose u = «
for all time. But clearly this is not a feasible strategy due to
limits on the total amount of inhibitors and potential side
effects. This leads to the formulation and analysis of
optimal control problems like problem [OC] which we
pursue in this paper. We also do assume in our descriptions
here that the overall amount A4 of inhibitors is large enough
to make a reduction of the initial tumor volume p,, possible
since otherwise the mathematically optimal solution comes
out to be T =0. This merely excludes some unrealistic

initial conditions for which ¢, is much larger than p, (see,
Ledzewicz and Schittler, 2007) and it streamlines the
presentation of the results.

The following statement about the dynamical behavior
of all three models guarantees the existence and positivity
of solutions for all times and arbitrary controls. Clearly, if
the state variables would not remain positive, the model
would not make sense. For models (A) and (B) this is an
easy corollary of the results proven in d’Onofrio and
Gandolfi (2004) and for model (C) it was verified in
Ledzewicz and Schiéttler (2005a).

Proposition 2.1. For each of the models (A), (B) or (C) and
any admissible control u and arbitrary positive initial
conditions p, and q, the corresponding solution (p,q) exists
for all times t=0 and both p and q remain positive.



U. Ledzewicz, H. Schattler | Journal of Theoretical Biology 252 (2008) 295-312 301

3. Optimal protocols for the models

We now present the structure of optimal protocols for
the three models (A), (B) and (C). These protocols will be
given in mathematical form as a regular synthesis of
optimal controls (e.g., Boltyansky, 1966; Fleming and
Rishel, 1975; Bressan and Piccoli, 2007). Such a synthesis
provides a full “road map” for how optimal protocols look
like for all possible initial conditions in the problem, both
qualitatively and quantitatively, and establishes the optim-
ality of all the controls and trajectories in the synthesis.
(A brief exposition of this theory is given in the Appendix.)
The results presented in this paper have been proven
mathematically in Ledzewicz and Schittler (2007) for
model (A), in Ledzewicz and Schittler (2008) for model
(B) and an outline of the proofs for model (C) is given in
Ledzewicz and Schéttler (2005a). It follows from these
results that optimal controls have a common qualitative
behavior for models (A) and (C), but follow a different
pattern for model (B). Some general and intuitively clear
properties are shared for all models:

® Optimal trajectories satisfy y(7') = A4, i.e., all available
inhibitors are exhausted by the end of the therapy.

e Optimal trajectories end with p(T) = ¢(T). This is a
property generally valid for any realistic growth model
for the tumor, not just the Gompertzian model
considered here, and is a consequence of using the
carrying capacity of the vasculature as a modelling
variable.

We first summarize the results of our earlier research
in Theorem 3.1 and then proceed to a more precise
description of the optimal controls.

Theorem 3.1. For both models (A) and (C), given any initial
condition (py,q,) € &, optimal controls are at most con-
catenations of the form 0asa0 where 0 denotes an interval
along which the optimal control is given by the constant
control u =0, that is, no inhibitors are given, a denotes an
interval along which the optimal control is given by the
constant control u = a at full dose, and s denotes an interval
along which the optimal control follows a time-varying
feedback control (that will be specified below), the so-called
singular control. This control is only optimal while the
system follows a particular curve & in the (p, q)-space, the
optimal singular arc. However, depending on the initial
condition (py, q,), not all of these intervals need to be present
in a specific solution. For the biologically most relevant
initial conditions typically optimal controls have the form bs0
with b denoting an interval along which the optimal control is
given by either a or 0 depending on the initial condition. For
model (B) singular controls do not exist and optimal controls
are bang-bang of at most the form 0a0.

Despite their name, which has its origin in classical
literature on optimal control (e.g., Bryson and Ho, 1975;
Krener, 1977), singular controls and the corresponding

singular curves are to be expected in a synthesis of optimal
controls for a problem of the type [OC] for nonlinear
models (Bonnard and Chyba, 2003). If they exist—they do
for model (A) and (C), but not for model (B)—they
typically will be either locally maximizing or minimizing
for the objective and higher-order conditions for optim-
ality, like the Legendre—Clebsch conditions (Bryson and
Ho, 1975; Krener, 1977), allow to determine their
optimality status. In fact, for the problem [OC] optimal
singular trajectories can only lie on one specific curve in
(», g)-space, the singular curve &. If singular controls are
locally minimizing, as it is the case here, then this curve
becomes the center piece to the optimal synthesis. Thus for
models (A) and (C) singular controls and the geometry of
the singular curve & are an essential part of the design of
the optimal protocols and in order to construct a full
synthesis of solutions, the formulas for singular controls
and corresponding singular trajectories need to be deter-
mined. The proposition below presents these formulas for
model (A). All mathematical arguments leading to the full
derivation of these formulas can be found in Ledzewicz and
Schittler (2007).

Proposition 3.1 (Ledzewicz and Schdttler, 2007). For model
(A) the singular curve & entirely lies in the sector {(p,q) :
X{q<p<x3q} where x7 and x3 are the unique zeroes of the
equation

(p(x)zgx(lnx—l)—i—gzo (14)

and satisfy 0<x}<l<x}<e. In new variables (p,x) with
x=p/q the singular curve & can be parameterized in
the form

P4 o) =0 for xt<x<xi. (15)

The singular control keeps the system on the singular curve
and is given as a feedback function of x in the form

us,-n(x)zé[(%£+bx> lnx+§§(1—£)} (16)
There exists exactly one connected arc on the singular curve
& along which the singular control is admissible, i.e.,
satisfies the bounds 0 <ug,(x) <a. This arc is defined over an
interval [x},x}] where xj and x;; are the unique solutions to
the equations ug,(x}) = 0 and ug, (X)) = a and these values
satisfy x7 <xj<1<x}<x3.

The two graphs given in Fig. 4 illustrate the proposition
for the parameter values from Hahnfeldt et al. (1999)
specified earlier. Fig. 4(a) shows the plot for the singular
control defined by (16) also indicating the values x} and x;
where the control saturates at ug,(x) = 0 and wu,(x) = a.
Fig. 4(b) shows the graph of the singular curve given by
formula (15). Saturation of the singular control at x} and
x} restricts the admissible part of this petal-like curve to the
portion lying between the lines p = x7¢ and p = xq. This
portion is marked with a solid line in Fig. 4(b). The
qualitative structures shown in Fig. 4 are generally valid for
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Fig. 4. Model (A): (a, left) The singular control ugy,(x) is plotted as a function of the quotient x = p/¢ = tumor volume/carrying capacity of the
vasculature and (b, right) the singular curve & is plotted in the (g, p)-plane with the admissible part (where the singular control takes values in the interval
[0, a]) marked by the solid portion of the curve. Away from this solid segment the singular control is either negative or exceeds the maximum allowable

limit a = 75.

arbitrary parameter values both for the control and the
singular curve. With decreasing values for the upper
control limit a the admissible portion shrinks, but it is
always preserved.

For model (C) the analysis of singular controls and
corresponding singular arcs was pursued in Ledzewicz and
Schéttler (2005a).

Proposition 3.2 (Ledzewicz and Schittler, 2005a). For
model (C) the singular curve & is defined in (p, q)-space by

[ dq2/3>

(17)

= =gqgexp| 3
r=p@=q p( bt di”

and the corresponding singular control is given in feedback
form as

1 (b—dg?? __b+dg
u‘\'l’n(q) = E ( q1/3 + 3gb _ dq2/3 —H).

This control is admissible over an interval q; <q<gq, where
the values g} and g’ are the unique solutions to the equation

usin(Q) =ain (0’ V b/d)

The two graphs in Fig. 5 illustrate this singular control
and singular curve. Again we use the numerical values
given earlier, but for this model we take a = 15 as upper
limit on the controls. The graph shown in Fig. 5(a)
represents the singular control given by (18). For the
numerical values used here the optimal control saturates at
q; =23.69 and ¢} = 12,319. The lower value is irrelevant
for all practical purpose and thus the corresponding
singular curve given by (17) shown in Fig. 5(b) has its
admissible part (the solid portion of the graph) starting
almost at the origin. The function p = p(g) that defines the
singular arc is strictly increasing over the interval where the

(18)

singular control is admissible. One difference to model (A)
is that here the singular curve will become inadmissible if
the upper limit ¢ on the allowable dosage lies below the
minimum of the function defined by (18). In Ledzewicz and
Schittler (2005a) our analysis was done for u =0 while
here we use p=0.02 to allow for comparison of the
syntheses of the two models (A) and (C). The equations
in Proposition 3.2 reflect this change. Furthermore, in
Ledzewicz and Schéttler (2005a) these and also the figures
for the synthesis below were presented in the variables
(p, x) where ¢ = x> which simplified the analysis, but also
generated distortions along the horizontal axis.

The admissible singular arcs for models (A) and (C)
become an essential part of the synthesis of solutions for
both models which are depicted in Figs. 6 and 7. The top of
each figure gives a representation of the synthesis as a
whole and the bottom gives an example of one particular
optimal trajectory and its corresponding optimal control.
The important curves for the synthesis are the admissible
portions of the singular curve (solid blue curve), portions
of trajectories corresponding to the constant controls u = 0
(dash-dotted green curves) and u = a (solid green curves),
and the line p = ¢ (dotted black line) where the trajectories
achieve the maximum tumor reduction. These diagrams
represent the optimal trajectories as a whole and each of
the different curves gives a different optimal trajectory
depending on the actual initial condition. The thick lines in
the graphs mark one specific such trajectory. In each case
the initial value p, for the tumor volume and ¢, for the
endothelial support are high and require to immediately
start with the treatment. The optimal trajectory therefore
initially follows the curve corresponding to the control
u = a. Note that, although inhibitors are given at full dose
along this curve, this shows very little effect on the number
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Fig. 5. Model (C): (a, left) The singular control ug,(q) is plotted as a function of the carrying capacity of the vasculature, ¢, and (b, right) the singular
curve ¢ is plotted in the (g, p)-plane with the admissible part (where the singular control takes values in the interval [0, a]) marked by the solid portion of
the curve. Away from this solid segment the singular control exceeds the maximum allowable limit ¢ = 15.

of the cancer cells in a sense of decrease. Once the
trajectory corresponding to the full dose hits the singular
arc .%, according to our analysis it is no longer optimal to
give full dose and the optimal controls here switch to the
singular control and the optimal trajectory follows the
singular arc. Ignoring some special cases that are due to
saturation of the singular control along this arc and are
described in Ledzewicz and Schittler (2007), the optimal
control will now follow the singular arc until all inhibitors
are exhausted according to the condition that (7)) = A4. It
is clear from the top graphs in Figs. 6 and 7 that this is the
part where most of the shrinkage of the tumor occurs.
When the inhibitors have been exhausted, therapy is over
and the optimal trajectory now follows a trajectory for the
control # = 0. The reason for this lies in the fact that due to
aftereffects in the dynamics the minimum tumor volume is
only realized along this trajectory when it crosses the
diagonal p = ¢. The corresponding time 7 then is the limit
of the horizon considered in the problem formulation [OC].

We close this section with giving one particular example
of an optimal trajectory and its corresponding control for
each of models (A) (Fig. 6 (bottom)) and (C) (Fig. 7
(bottom)). The initial conditions for each run are chosen as
(Po>99) = (12,000 mm?; 15,000 mm?). For model (A) the
dynamics along the constant controls u = 0 and « is very
fast resulting in short initial and terminal pieces along
which the control is constant while the bulk of time is spent
along the singular arc. In both cases the optimal singular
control administers the inhibitors first at lower levels and
then the dosage intensifies along the singular arc, an
observation already made by Ergun et al. (2003), for model
(C). But for this model the times along the constant
controls are significantly longer. Protocols of this type
correspond to the most typical structure as0, but depending

on the initial condition other scenarios are possible.
Clearly, if the initial condition already would lie on the
admissible part of the singular arc, the portion with u = a
will not be present. On the other hand, if the overall
amount of inhibitors is so large that the lower saturation
point on the singular arc would be reached with inhibitors
remaining, then it is actually not optimal to wait until this
point is reached, but optimal trajectories need to leave the
singular arc earlier and switch to the control u = « until all
inhibitors are being used up. The behavior of the optimal
solutions around the saturation point on the singular arc is
actually a complex mathematical problem and more details
can be found in Ledzewicz and Schittler (2007).

Note that, although there are clear quantitative differ-
ences in the solutions to both models shown in Figs. 6
(bottom) and 7 (bottom), qualitatively the optimal
syntheses for models (A) and (C) are identical (Figs. 6
(top) and 7 (top)). On the other hand, for model (B), as
stated in Theorem 3.1, no singular arcs exist (Swierniak
et al., 2006b; Ledzewicz and Schittler, 2008) and the syn-
thesis has the simple form 0a0. This makes the protocols
resulting from model (B) easy to implement. The optimal
protocols for models (A) and (C) on the other hand are not
realistically implementable, but they define the benchmarks
for realistic and implementable, but suboptimal strategies.

4. Suboptimal protocols

Singular controls are time-varying feedback controls
that depend on the current values of the state of the
system—tumor volume and endothelial support—and are
only optimal along one specific curve. Clearly these are not
implementable strategies since the required information
generally is not available in continuous time. Even at the
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Fig. 6. Model (A): Synthesis of optimal trajectories (top) and one example of an optimal trajectory (bottom, left) and corresponding optimal control
(bottom, right) for initial condition (p,, ¢,) = (12,000 mm?; 15,000 mm?). For this particular example first the optimal control is given at full dosage until
the singular curve . is reached (#; = 0.09 days); then administration follows the time-varying singular control until inhibitors are exhausted (#, = 6.56

days) and due to aftereffects the maximum tumor reduction is realized along
reaches the diagonal p = ¢.

initial time a reliable estimate of these values may not be
known. It is therefore of interest to formulate simple, easily
implementable, but also robust strategies that could be
employed with great uncertainty in the state of the system.
The significance of the optimal solution lies in providing a

a trajectory for control u = 0 at time 7 = 6.73 days when the trajectory

theoretical benchmark to which these practical schemes
can be compared to assess their efficiency. In this section
we explore several protocols that apply all available
inhibitors in one session at a constant dosage at the beginning
of therapy and compare their effectiveness with the
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Fig. 7. Model (C): Synthesis of optimal trajectories (top) and one example of an optimal trajectory (bottom, left) and corresponding optimal control

ottom, right) for nitial condition 5 = 5 mm-~; 15, mm’). As
(b ight) for initial conditi 0, 4o) = (12,000 mm?3; 15,000 mm?). A

for model (A), first the optimal control is given at full dosage until the

singular curve & is reached (¢; = 1.00 days); then administration follows the time-varying singular control until inhibitors are exhausted (z, = 6.13 days)
and due to aftereffects the maximum tumor reduction is realized along a trajectory for control u = 0 at time 7" = 10.87 days when the trajectory reaches

the diagonal p = ¢.

theoretically optimal protocols. As it was done implicitly in
the formulation of the optimization model [OC] described
earlier, we do assume here that the overall amount A4
corresponds to what is considered an acceptable amount
for one treatment period. We shall comment on multi-
period treatments briefly in the conclusion.

A simple ad hoc strategy is to give all available inhibitors
at maximum rate from the beginning of therapy and we call
this the full-dose protocol. Again, because of aftereffects the
minimum tumor volume that is generated by this strategy is
not the value of the system when the inhibitors are being
exhausted, but it is realized when the subsequent trajectory
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of the system corresponding to u = 0 crosses the diagonal.
This applies to any strategy considered. Thus mathemati-
cally this strategy corresponds to a simple bang-bang
control of the type a0. In fact, for both models (A) and (C),
if the initial tumor volume p, is close to the p-value for the
lower saturation point on the singular arc, then these
a0-strategies are indeed the optimal solutions for all
realistic values of endothelial support ¢,. Naturally thus
the a0 protocol is an excellent sub-optimal strategy for
small tumor volumes that is almost as good as the optimal
solution. However, as our simulations show, for initial
conditions with higher initial values p, protocols that use a
reduced dose do better. We therefore also consider for
comparison half-dose protocols that give the full amount of
inhibitors at half the maximum dose for twice the time. It
will be seen that this is another very good ad hoc strategy
that generally does well for high initial values of tumor
volume p,. A third protocol that we consider is based on
the optimal control and gives as dose the averaged dose of
the optimal control, that is

1 T
”7:7/0 u(t)dt:%, (19)

where T is the time when all inhibitors are exhausted along
the optimal control. The interval when the tumor volume
still decreases due to aftereffects is not included in this
computation. We call this the averaged optimal dose
protocol. Clearly this protocol depends on the initial
condition while the ad hoc full- and half-dose protocols
do not. We now compare these three suboptimal strategies
to the optimal one for models (A) and (C).

Suboptimal protocols for model (A): For a general
constant dose protocol u=v (see Fig. 1 for the phase
portraits for ¥ =0 and a), the dynamics has a strong
differential-algebraic character: it is fast in ¢ and slow in p.
Essentially the systems follows an almost “‘horizontal” line
until the algebraic constraint manifold determined by the
¢ = 0 nullcline,

_ bp
1 u+ Gv+dp2/3’

is reached and then the dynamics evolves along this curve.
In fact, this nullcline very much plays the same role for
constant dose protocols as the singular curve does for the
optimal solutions. Fig. 8 shows both the singular curve (in
red) and the ¢ = 0 nullclines for the full dose # = « (in blue)
and half dose u = a/2 (in green). The a-nullcline intersects
the singular curve in the saturation point and it is clear that
the two curves are almost identical around and below this
saturation point. Hence in this area the full-dose protocols
come very close to the optimal protocols. But for higher
values of p and ¢ these curves separate and now the
singular curve is better approximated by the a/2-nullcline.
Hence the half-dose protocol does better there.

Fig. 9 (left column) gives three graphs of the minimum
tumor volume realized by the various protocols for a fixed
initial condition p, and varying initial conditions g, i.c.,

(20)
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Fig. 8. Model (A): The singular curve ¥ and nullclines A", and A"/,
for the constant dose protocols for u=a =75 and u=a/2 =375,
respectively.

slices through the graphs of the associated value functions
for p, = const. In all diagrams the red curve gives the
optimal values, the blue curve corresponds to giving the
maximum dosage a and the green curve to giving half
dosage a/2 while the black curve gives the values for the
averaged optimal dose protocol.

For small tumor volumes (p, = 6000 mm?), there is no
discernable difference between the optimal, averaged and
full-dose protocols. The saturation value of the singular
control lies at p,, = 4122mm?* and in this range, as the
value of the singular control is close to a = 75, the optimal,
averaged and full-dose protocols give almost identical
values. The half-dose protocol does noticeable worse for
these values. In fact, it is so far off that we did not include
this curve in the range for Fig. 9 (top left). Naturally, the
realizable minimum values increase with growing initial
endothelial support ¢,. But as the initial tumor volume p,
increases, the full-dose protocol starts to perform worse
while the half-dose protocol improves. For p,=
12,000 mm? the full-dose protocol does considerably worse
while the half-dose protocol starts to perform better. But in
all cases the averaged optimal dose protocol does best among
these three constant infusion protocols. Actually, for all
these values the averaged optimal dose protocol stayed
within 0.5% of the optimal value. But even for the full-dose
protocols the differences to the optimal value barely exceed
2% for high initial values of ¢, if the initial condition
(Po» q0) lies to the right of the singular curve (the blue curve
in Fig. 8) since the optimal control starts with # = @ in this
region. If, however, the initial condition lies to the left of
the singular curve, then the discrepancies become larger,
exceeding the 5% range for the full-dose protocol. The
reason lies in an argument we presented in Ledzewicz and
Schéttler (2007) where it was shown that it is optimal in
this region to first wait (i.e., start with the control u = 0)
until the level of endothelial support reaches the singular
curve upon which treatment ensues. In this case it
simply is unnecessary waste if the control u = a is applied
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Fig. 9. Model (A): Graphs of the minimum tumor volumes for a given initial tumor volume pj, as function of the initial carrying capacity ¢, realized by the
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6000 mm? (top), py = 9000 mm?* (middle) and p, = 12,000 mm? (bottom). The graphs on the right give the dosages of the corresponding averaged optimal
controls.
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immediately. This feature, that the optimal control starts
with a segment where u = 0 if the initial condition (p, ¢,)
lies to the left of the singular curve also is responsible for
the fact that the averaged optimal dosages in Fig. 9
increase for small values of ¢, and then tend to level off.
Fig. 9 gives the graphs for the averaged optimal dosages as
function of ¢, in the right column. These values tend to
increase in ¢, since the initial interval when u = a is being
used, however, brief it is, increases with ¢,. However, note
from these three diagrams that the values of the averaged
controls for fixed ¢, decrease with increasing initial tumor
volumes p,. The reason for this lies in the fact that the
optimal singular control has this property of dose-
intensification already noted for model (C) in Ergun et al.
(2003)—the dosage increases in time as the tumor volume
decreases. This is inherited by the averaged values.

Since anti-angiogenic therapies do not kill the cancer,
but only delay its further growth, one of the positive effects
of the optimal solution is also that it delays the time when
this minimum is reached. For the averaged optimal dose
protocol by construction the time when the inhibitors are
exhausted is the same as for the optimal protocols and thus
the times when the minimum tumor reductions are
achieved are almost identical. But since the optimal
singular arc applies the inhibitors at time-varying lower
doses, the time 7', when the minimum is realized along
the optimal solution is larger, at times significantly, than
the time 7'y for the full-dose protocol. In Table 3 these
times are compared for the optimal and the full-dose
protocols. Given the data, with a full-dose protocol all
inhibitors are exhausted in 4 = 4/a days. For a0 protocols
the minimum tumor volumes are being realized almost
immediately afterward and this does not change much with
the initial condition (p,,q,) (see Table 3, top portion).
However, if the initial tumor volume p, is high, then
inhibitors are given at a much lower rate initially along the

Table 3
Model (A): Comparison of the times in days when the minimum tumor
volumes for the optimal (bottom) and a0 protocol (top) are realized

90 Po

6000 9000 12,000 15,000
a0 protocol
3000 4.138 4.163 4.192 4.227
6000 4.139 4.164 4.192 4.228
9000 4.139 4.164 4.192 4.228
12,000 4.139 4.164 4.193 4.229
15,000 4.139 4.164 4.193 4.229
18,000 4.140 4.165 4.193 4.229
Optimal protocol
3000 4.457 5.441 6.810 9.104
6000 4.446 5.390 6.784 9.138
9000 4.446 5.380 6.745 9.134
12,000 4.447 5.371 6.729 9.103
15,000 4.449 5.370 6.722 9.085
18,000 4.451 5.369 6.718 9.077

optimal control and this leads to significantly larger times
T when the minimum is realized (Table 3, bottom portion).
For example, if p, = 6000 mm® and ¢, = 15,000 mm?, then
the time 7 for the optimal control (9.138 days) is
almost double the time for the straightforward a0 protocol
(4.228 days). These times are compared in Table 3 for a
wide range of initial data. The differences become
especially pronounced for initial conditions to the left of
the singular curve when the times until the minimum is
reached more than double for the optimal protocol. Clearly
this indicates that in these cases it was not such a good
strategy to give all inhibitors in one session at the beginning
and that they might have better been applied at lower doses
like the singular control does. In fact, not only in this
region, but generally for high initial values p, of the tumor
volume, for the value a of the upper limit on the control or
dosage used in these simulations, a control that applies all
available inhibitors at half the maximum dose, a/2, over
twice the time interval does significantly better than the
straightforward full-dose protocol.

The reason for this is easily understood from the
geometry of the trajectories involved. Fig. 10 shows an
example of the relevant trajectories for initial conditions
(o> 90) = (15,000 mm?3; 6000 mm?), the optimal trajectory
shown in red, the averaged optimal dose trajectory in
black, and the responses to the full- and half-dose
protocols in blue and green, respectively. It is clear that
the ¢ = 0 nullcline for u = a/2 is a much better approxi-
mation of the optimal singular curve for high initial values
of p, than the ¢ = 0 nullcline for u = a is and thus the half-
dose strategy is a superior sub-optimal control for large
tumor volumes. In fact, if we were to reduce the upper limit

x 10%
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Fig. 10. Model (A): A comparison of the optimal trajectory (red) with
trajectories for the averaged optimal control protocol (black), the full-dose
protocol (blue) and half-dose protocol (green) for initial condition
(Po» 9o) = (15,000 mm?; 6000 mm?).
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a defining the control set to @/2 in the optimal control
problem, the saturation point of the singular arc is given by
11,902mm? and thus for almost all initial conditions the
optimal controls will be given by bang-bang controls that
give the new “full” dose @/2 from the beginning, thus
explaining the superior performance of the half-dose
protocols for this range of initial conditions. Lowering
the upper limit of the dose further to @/4 no longer
improves the value. In fact, these protocols generally do
quite worse, since the ¢ =0 nullcline for u = a/4 now
becomes a poor approximation of the singular curve. For
the initial condition (15,000 mm?; 6000 mm?) the realized
minimal value for the quarter dose strategy is only
p(T) =12,316mm?*, almost 20% worse than the value
realized with the half-dose protocol.

Naturally, the tumor reduction realized for a constant
dose protocol depends on the dosage given. Our calcula-
tions show that a higher dose is not necessarily better if the
same overall amount is administered, and that optimal
protocols give excellent guidance on how to choose this
dosage. In conclusion, for model (A) the averaged optimal
dose protocol is the best of the three constant dose protocols
considered here and consistently comes within 1% of the
optimal value. The full-dose protocols are close to optimal
for smaller initial tumor volumes p, while the half-dose
protocols do better for higher values of p,. Overall these two
ad hoc protocols stay within a reasonable range of the
optimal values and from a practical side they have the
advantage of not requiring any knowledge about the initial
conditions.

Suboptimal a0 protocols for model (C): For this model the
g-dynamics is slower and this results in a different behavior
of the suboptimal protocols. Fig. 11 gives the graphs of the
minimum tumor volume realized for varying initial
endothelial support g, and fixed initial tumor volume p,
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for p, = 6000mm?* and 15,000mm?. For p, = 6000 mm?
(more generally for smaller p,) and small values of ¢, the
half-dose protocol (green curve) does almost as good
as the optimal protocol, but then becomes inferior as ¢,
increases; for high values of g, the full-dose protocol is the
best of the three suboptimal protocols. The reason for this
lies in the fact that for high ¢, the first portion of the
optimal solution is a trajectory with u = a and there is a
significant time period spent along this curve due to the
now slower g-dynamics (see also Fig. 1). This shifts the
balance towards the full-dose strategy. On the other hand,
for small values of ¢, this portion is small and the values of
the singular control are low, in about the half-dose range,
and thus the half-dose protocol is better. For model (A)
similar effects were not seen because its ¢g-dynamics was
considerably faster. For high values of p,, like p,=
15,000mm?, the four graphs separate and the half-dose
protocol is the best of the suboptimal approximations
we consider and the full dose does the worse. For this
model the averaged optimal control is not as effective as
for model (A), and again the reason for this lies in the
slower g-dynamics.

Fig. 12 shows the four trajectories corresponding to the
optimal (red), the averaged optimal control (black), full-
(blue) and half-dose (green) protocols for initial conditions
(o> 90) = (15,000 mm?; 2000 mm?). Since the point (p,, g,)
lies to the left to the singular curve, the optimal control has
an initial segment with u# =0 until the corresponding
trajectory hits the singular arc. On the other hand, all the
suboptimal protocols due to their construction immedi-
ately give inhibitors, although at different doses. All four
protocols result in minimal tumor volumes that lie within
11% of the optimal minimal value. The blow-up of the
final segments of these trajectories exhibits the ordering of
the values.
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Fig. 11. Model (C): Graphs of the minimum tumor volumes for a given initial tumor volume p,, as function of the initial carrying capacity ¢, realized by
the optimal control (red curve), the full-dose protocol (blue), the half-dose protocol (green) and the averaged optimal control protocol (black) for

Po = 6000mm? (left) and p, = 15,000 mm? (right).
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Fig. 12. Model (C): A comparison of the optimal trajectory (red) with trajectories for the averaged optimal control protocol (black), the full-dose protocol
(blue) and half-dose protocol (green) for initial condition (pg, o) = (15,000 mm?; 2000 mm?). A blow-up of the final segments is included on the right.

5. Conclusion

In this paper we showed the role analytically obtained
optimal protocols, although they may not be practically
realizable, can still play in designing practical protocols for
anti-angiogenic treatments. The optimal protocol in this
process serves as a benchmark for other simpler and
implementable protocols by providing theoretically calcu-
lated optimal values to which these protocols can be
compared, thus determining a measure for how close to
optimal a given general protocol is. Here we considered
three suboptimal protocols for anti-angiogenic treatments
that applied all available inhibitors in one session from the
beginning of therapy, but at different dosages, and evaluated
their overall efficiency by comparing the minimum tumor
volumes that these protocol achieve with the optimal
solution for problem [OC]. Besides this obvious application,
optimal protocols also provide a set of data that can be used
to design simple implementable protocols like the averaged
optimal dose protocol we introduced in this paper. For the
model of Hahnfeldt et al. (1999), these are actually the best
of the suboptimal protocols considered here and they come
exceptionally close to the optimal values, within 1%.
Without knowing the data coming from these theoretically
derived optimal protocols it would be extremely difficult, if
not impossible, to come up with such a good suboptimal
protocol even pursuing an exhausting trial and error search.
While the choice of the best suboptimal protocol naturally
depends on the specific model considered, the initial tumor
volume, and the size of the endothelial support, it was
observed in general that the averaged optimal dose
decreased with increasing initial tumor volume. Here an
important fact also is that the averaged optimal dosage was
quite robust in the sense that it was not very sensitive to the
initial data. Protocols that have strong robustness properties
in this sense are of medical importance if these data are
difficult to get. In this context we have also shown for the

models considered here that the simple full- and half-dose
protocols are good sub-optimal strategies (generally within
the 5-15% range of the optimal values). Also, in all these
cases it was observed that the full-dose protocol was better
for low initial values of p,, but the half-dose protocol
performed better for higher initial tumor volumes.

An implicit assumption in the problem formulation
considered in this paper is that the amount of inhibitors, A4,
is a priori specified to be given over one time or therapy
period. However, since anti-angiogenic therapies do not
kill the cancer cells, but starve the tumor by depriving it of
its endothelial support, if left to itself, then at the end of
therapy, this support will simply redevelop. In the absence
of further treatment it follows from the dynamics of the
uncontrolled system that the tumor volume will again start
to increase after the time when the minimum tumor volume
is realized and the system will converge to the medically
non-viable globally asymptotically stable equilibrium point
(P, g). Tt is therefore clear that repeated applications are
necessary if one wants to control the tumor volume in the
long run to lie below a certain acceptable level. A simple
practical scheme would be to schedule periodic sessions
over some predetermined horizon [0, T] that includes both
the period of application of angiogenic inhibitors and
a subsequent rest period. Mathematically this leads
to straightforward control strategies given by periodic
controls. Depending on the dynamics the overall effective-
ness of such a protocol depends on the length of the
predetermined therapy horizon T, and adjustments in 7'y,
may become necessary as treatment progresses (see also
Ledzewicz and Schittler, 2008 in the context of model (B)).
But this will be considered elsewhere.
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Appendix A. Regular synthesis

The top diagrams in Figs. 6 and 7 illustrate the structure
of a regular synthesis of optimal controls and trajectories
projected in (p, ¢)-space. Here we briefly outline why such a
structure indeed implies that all controls and trajectories of
this family are optimal. The mathematical arguments are
not necessarily difficult, but they are quite technical and
lengthy and we therefore refer the interested reader to the
literature, e.g., the original article by Boltyansky (1966), a
treatment of the subject in a classical textbook on optimal
control (Fleming and Rishel, 1975, Chapter IV, Section 6),
or in a more modern style in Bressan and Piccoli (2007,
Section 7.6).

Essentially, a regular synthesis for an optimal control
problem is a decomposition of the relevant region in the
state space into a finite or possibly countably infinite
collection of embedded submanifolds, .# = {M};cn, some-
times called strata, together with (i) a well-defined flow of
trajectories corresponding to admissible controls on each
stratum and (ii) regular transitions between the strata
that generate (iii) a memoryless flow of extremal trajec-
tories; that is, forward in time there exist unique solutions
and the resulting controlled trajectories satisfy the condi-
tions of the Pontryagin Maximum Principle. If such a
decomposition exists and if some rather mild technical
regularity conditions are satisfied, then it can be shown
that the cost evaluated along the trajectories in the
synthesis, as function of the initial conditions, is a solution
to a certain partial differential equation, the so-called
Hamilton—Jacobi—Bellman equation, and that it has
enough regularity properties to conclude that it indeed is
the value function of the problem. This then verifies the
optimality of the selection of controls that goes into the
synthesis.

In our case the relevant subset of the state space that is
covered in a 1-1 way by a family of extremals is the set

X ={(p,q,y): 0<p<p,0<g<q,0<y<A} C R’

and the strata of our decomposition are open subsets away
from the singular curve (and on all of these the admissible
control is simply given by the constant control u = a or 0)
and lower-dimensional strata (surfaces, curves and points)
that lie at the boundaries between these higher-dimensional
strata. For example,

M, = {(p,q,y) L (P, q) € S, 0<ugp (’;) <a,y>0} 21)

is the two-dimensional embedded analytic submanifold of
the state space where the optimal control is given by the
singular control. Recall that & denotes the singular curve;
the restriction on ug;, ensures that it is admissible and not at
saturation and the inequality y >0 says that there still are
inhibitors available to give. Since the singular control also
is real analytic this generates a well-defined analytic flow of
trajectories on M that remains on M. There are various
submanifolds lying in the boundary of M corresponding
to all possible entry and exit strategies defining the
decomposition of the state space. For example,

My = {(p,q,y) () € 7,0<uy, (’é) <ay= 0} 22)

consists of the points when the inhibitors run out (y = 0).
This particular submanifold does not support trajectories,
but only acts as a transient stratum into one of the open
subsets of the decomposition where the control is defined
by u = 0. In this sense the “flow” of trajectories on M3 is
trivial since it only lasts for length zero. It is not that
difficult, albeit lengthy and somewhat technical to write
down a complete description of all the strata in the
decomposition and the flows of trajectories defined on
them. By construction the resulting piecewise analytic flow
of trajectories is memoryless and covers the state space 1-1.
Essentially this is a consequence of the uniqueness of
solutions to ordinary differential equations and having an
appropriate set of switching rules between the strata. This
precisely is guaranteed by the analysis of optimal controls
and trajectories carried out in Ledzewicz and Schéttler
(2007). The sufficiency of this construction, i.e., that all
the controls in this synthesis are optimal, then is a
direct consequence of the results on regular synthesis
(Boltyansky, 1966; Fleming and Rishel, 1975; Bressan and
Piccoli, 2007).
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